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Abstract. Most existing image dehazing methods tend to boost local
image contrast for regions with heavy haze. Without special treatment,
these methods may significantly amplify existing image artifacts such
as noise, color aliasing and blocking, which are mostly invisible in the
input images but are visually intruding in the results. This is especially
the case for low quality cellphone shots or compressed video frames. The
recent work of Li et al. (2014) addresses blocking artifacts for dehazing,
but is insufficient to handle other artifacts. In this paper, we propose
a new method for reliable suppression of different types of visual arti-
facts in image and video dehazing. Our method makes contributions
in both the haze estimation step and the image recovery step. Firstly,
an image-guided, depth-edge-aware smoothing algorithm is proposed to
refine the initial atmosphere transmission map generated by local priors.
In the image recovery process, we propose Gradient Residual Minimiza-
tion (GRM) for jointly recovering the haze-free image while explicitly
minimizing possible visual artifacts in it. Our evaluation suggests that
the proposed method can generate results with much less visual artifacts
than previous approaches for lower quality inputs such as compressed
video clips.

Keywords: Video dehazing · Image dehazing · Contrast enhancement ·
Artifact suppression

1 Introduction

Due to atmospheric absorption and scattering, outdoor images and videos are
often degraded to have low contrast and visibility. In addition to the deteriora-
tion of visual quality, heavy haze also makes many computer vision tasks more
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difficult, such as stereo estimation, object tracking and detection etc. There-
fore, removing haze from images and video becomes an important component in
a post-processing pipeline. Conventional global contrast enhancement methods
often do not perform well because the degradation is spatially-varying. In gen-
eral, accurate haze estimation and removal from a single image is a challenging
task due to its ill-posed nature.

Haze removal has been extensively studied in the literature. Early approaches
focus on using multiple images or extra information [12,20,23,24] for dehazing.
Recently dehazing from a single image has gained considerable attention, and
they can be broadly classified into two groups: methods based on transmission
estimation [7,10,19,26] and ones based on adaptive contrast enhancement [6,9,
25]. Techniques in the latter group do not rely on any physical haze model, thus
often suffer from visual artifacts such as strong color shift. The state-of-the-art
methods often depend on a physical haze model for more accurate haze removal.
They first estimate the atmosphere transmission map along with the haze color
based on local image priors such as the dark channel prior [10] and the color-line
prior [7]. The latent, haze-free image is then computed by directly removing the
haze component in each pixel’s color. Some methods are proposed to deal with
special cases. For example, planar constraints can be utilized in road images [27].
Li et al. proposed a method to dehaze videos when the coarse depth maps can
be estimated by multi-view stereo [17].

The state-of-the-art methods usually can generate satisfactory results on high
quality input images. For lower quality inputs, such as images captured and
processed by mobile phones, or compressed video clips, most existing dehazing
methods will significantly amplify image artifacts that are visual unnoticeable
in the input, especially in heavy haze regions. An example is shown in Fig. 1,
where the input image is one video frame extracted from a sequence captured
by a cellphone camera. After dehazing using previous methods [10,16], strong
visible artifacts appear in the sky region of the results. These artifacts cannot

Fig. 1. Dehaze one video frame. (a) Input image. (b) Result of He et al. [10]. (c) Result
of Li et al. [16]. (d) Ours. Note the strong banding and color shifting artifacts in the
sky region in (b) and (c). (Color figure online)
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be easily removed using post-processing filters without hampering the image
content of other regions. Similarly, removing the original artifacts completely
without destroying useful image details is also non-trivial as a pre-processing
step.

Li et al. [16] were the first to consider the problem of artifact suppression
in dehazing. Their approach is designed to remove only the blocking artifacts
that are usually caused by compression. In this method, the input image is first
decomposed into a structure layer and a texture layer, and dehazing is performed
on the structure layer and deblocking is applied on the texture layer. The final
output image is produced by re-combining the two layers. This method however
often does not work well for other artifacts that commonly co-exist in lower
quality inputs, e.g., the color banding artifact in Fig. 1 and color aliasing in later
examples. In addition, their final results tend to be over-smoothed with missing
fine image details, as we will show in our experimental results. This suggests that
independent dehazing and deblocking on two separate layers is sub-optimal.

In this work, we propose a new method for image and video dehazing with
an emphasis on preventing different types of visual artifacts in the output.
Our method follows the general two-step framework and makes contributions
in each step: estimating atmosphere transmission map first, then recover the
latent image. In the first step, after initializing the transmission map using exist-
ing local priors such as the dark channel prior [10], we refine it using a global
method based on image guided Total Generalized Variation (TGV) [3] regulariza-
tion. Compared with other commonly used refinement approaches, our method
tends to produce transmission maps that are physically more correct: it pro-
duces very smooth regions within the surfaces/objects, while generates strong
edges at depth discontinuities. Observing that the boosted visual artifacts by
existing methods are often not visible in the input image, in the second stage,
we propose a novel way to recover the latent image by minimizing the gradient
residual between the output and input images. It suppresses new edges which
does not exist in the input image (often are artifacts), but has little effects on
the edges that already exist, which are ideal properties for the dehazing task.
Considering the existence of artifacts, the linear haze model may not hold on
every pixel. We then explicitly introduce an “error” layer in the optimization,
which could separate out the large artifacts that violate the linear haze model.
Both quantitative and qualitative experimental results show that our method
generates more accurate and more natural-looking results than the state-of-the-
art methods on compressed inputs. In particular, our method shows significant
improvement on video dehazing, which can suppress both spatial and temporal
artifacts.

2 Overview of Transmission Map Initialization

The transmission map in our framework is required to be initialized by exist-
ing local priors, e.g., the widely used dark channel prior [10]. Here we provide
a quick overview of the basic image formation model and this method. Note
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that our main contributions, transmission map refinement and image recovery,
are orthogonal to the specific method that one could choose for initializing the
transmission map.

Koschmieder et al. [13] proposed a physical haze model as:

I(x) = J(x)t(x) + A(1 − t(x)), (1)

where I is the hazy image, J is the scene radiance, A is the atmospheric light
and assumed to be constant over the whole image, t is the medium transmission
and x denotes the image coordinates. The transmission describes the portion of
the light reaches to the camera without scattered. The task of dehazing is to
estimate J (with A and t as by-products) from the input image I, which is a
severely ill-posed problem.

The dark channel prior, proposed by He et al. [10], is a simple yet efficient
local image prior for estimating a coarse transmission map. The dark channel is
defined as:

Jdark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y)), (2)

where c denotes the color channel and Ω(x) is a local patch around x. Natural
image statistics show that Jdark tends to be zero. We can rewrite Eq. (1) and
take the minimum operations on both sides to get:

min
y∈Ω(x)

(min
c

Ic(y)
Ac

) = min
y∈Ω(x)

(min
c

J(y)
Ac

t(x)) + 1 − t(x). (3)

By assuming the transmission map is constant in each small local patch, we
can eliminate Jdark to obtain the coarse transmission map:

t̃(x) = 1 − min
y∈Ω(x)

( min
c∈{r,g,b}

Ic(y)
Ac

), (4)

where the atmospheric light color A can be estimated as the brightest pixel
color in the dark channel. This coarse transmission map is computed locally,
thus often need to be refined. In practice it is often refined by soft matting [14]
or guided image filtering [11]. Finally, the scene radiance is recovered by:

J(x) = (I(x) − A)/t(x) + A. (5)

The dark channel prior described above is an elegant solution and often
achieves high quality results for high quality images. However, as observed by Li
et al. [16], image artifacts, such as noise or blocking, can affect both dark chan-
nel computation and transmission map smoothing. The original dark channel
approach often cannot generate high quality results for images with artifacts.

3 TGV-Based Transmission Refinement

In He et al.’s method, the transmission map is refined by soft matting [14] or
guided image filtering [11]. Both methods are edge-aware operations. They work
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well with objects that have flat appearances. However, for objects/regions with
strong textures, the refined transmission map using these methods tend to have
false variations that are correlated with such textures. This is contradictory to
the haze model, as the amount of haze in each pixel is only related to its depth,
not its texture or color. Therefore, we expect the refined transmission map to be
smooth inside the same object/surface, and only has discontinuities along depth
edges. We thus propose a new transmission refinement method to try to achieve
this goal without recovering the 3D scene.

We formulate the transmission refinement as a global optimization problem,
consisting of a data fidelity term and regularization terms. Note that the trans-
mission values of white objects are often underestimated by the dark channel
method. We need a model that is robust to such outliers or errors. Instead of
the commonly-used �2 norm data term, we use the �1 norm to somewhat tol-
erate outliers and errors. The second-order Total Generalized Variation (TGV)
[3,8,21,28] with a guided image is adopted for regularization. Compared with
conventional Total Variation (TV) regularization that encourages piecewise con-
stant images and often suffers from undesired staircasing artifacts, TGV prefers
piecewise smooth images. This is a desired property for the transmission, as we
may have a slanted plane (e.g., road, brigde) whose transmission varies smoothly
along with the change of depth.

Given the initial transmission t̃ and a guided image I, the optimization prob-
lem with TGV regularization is:

min
t,w

{α1

∫
|D1/2(∇t − w)| dx + α0

∫
|∇w| dx +

∫
|t − t̃| dx}, (6)

where D1/2 is the anisotropic diffusion tensor [28] defined as:

D1/2 = exp(−γ|∇I|β)nnT + n⊥n⊥T , (7)

where n is the direction of the gradient of the guided image n = ∇I
|∇I| and

n⊥ is the perpendicular direction, γ, β are parameters to adjust the sharpness
and magnitude of the tensor, w is an auxiliary variable. Our experiments show
that the sharp depth edges cannot be preserved without the guided image when
using the TGV regularization. Unlike the previous local refinement methods,
TGV performs globally and is less sensitive to the local textures.

To solve this problem, we apply the prime-dual minimization algorithm [4]
with the Legendre Fenchel transform. The transformed primal-dual problem is
given by:

min
t,w

max
p∈P,q∈Q

{α1

〈
D1/2(∇t − w), p

〉
+ α0 〈∇w, q〉 +

∫
|t − t̃| dx}, (8)

where p, q are dual variables and their feasible sets are:

P = {p ∈ R2MN , ‖p‖∞ ≤ 1},

Q = {q ∈ R4MN , ‖q‖∞ ≤ 1}. (9)
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The algorithm for transmission refinement is formally summarized in Algo-
rithm1.

Algorithm 1. Transmission map refinement by Guided TGV
Initialization: t0 = t̃, w0, t̄0, w̄0, p0, q0 = 0, σp > 0, σq > 0, τt > 0, τw > 0
for k = 0 to Maxiteration do

pk+1 = P[pk + σpα1(D
1/2(∇t̄k − w̄k))]

qk+1 = P[qk + σqα0∇w̄k]
tk+1 = thresholdingτ (tk + τuα1∇T D1/2pk+1)
wk+1 = wk + τw(α0∇T qk+1 + α1D

1/2pk+1)
t̄k+1 = tk+1 + θ(tk+1 − t̄k)
w̄k+1 = wk+1 + θ(wk+1 − w̄k)

end for

In the algorithm, σp > 0, σq > 0, τt > 0, τw > 0 are step sizes and k is the
iteration counter. The element-wise projection operators P is defined:

P[x] =
x

max{1, |x|} . (10)

The thresholdingτ () denotes the soft-thresholding operation:

thresholdingτ (x) = max(|x| − τ, 0)sign(x). (11)

θ is updated in every iteration as suggested by [4]. The divergence and gradient
operators in the optimization are approximated using standard finite differences.
Please refer to [4] for more details of this optimization method.

Figure 2 shows the transmission maps estimated by guided filter, matting
followed by bilateral filter and TGV refinement. Compared with guided image

Fig. 2. Comparisons of transmission refinement methods. (a) Input image. (b) Result
of guided image filtering [11]. (c) Result of matting followed by bilateral filtering [10].
(d) Ours. (Color figure online)
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filtering or bilateral smoothing, our method is aware of the depth edges while
producing smooth surface within each objects (see the buildings indicated by the
yellow circles). In addition, our optimization scheme does not exactly trust the
initialization and it can somewhat tolerate the errors (see the house indicated
by the blue arrow).

4 Robust Latent Image Recovery by Gradient Residual
Minimization

After the transmission map is refined, our next goal is to recovery the scene
radiance J. Many existing methods obtain it by directly solving the linear haze
model (5), where the artifacts are treated equally as the true pixels. As a result,
the artifacts will be also enhanced after dehazing.

Without any prior information, it is impossible to extract or suppress the
artifacts from the input image. We have observed that in practice, the visual
artifacts are usually invisible in the input image. After dehazing, they pop up as
their gradients are amplified, introduce new image edges that are not consistent
with the underlying image content, such as the color bands in Fig. 1(b,c). Based
on this observation, we propose a novel way to constrain the image edges to
be structurally consistent before and after dehazing. This motivates us to min-
imize the residual of the gradients between the input and output images under
the sparse-inducing norm. We call it Gradient Residual Minimization (GRM).
Combined with the linear haze model, our optimization problem becomes:

min
J

{1
2

∫
‖Jt−(I − A + At)‖22 dx + η

∫
‖∇J − ∇I‖0 dx}, (12)

where the �0 norm counts the number of non-zero elements and η is a weighting
parameter. It is important to note that the above spares-inducing norm only
encourages the non-zero gradients of J to be at the same positions of the gra-
dients of I. However, their magnitudes do not have to be the same. This good
property of the edge-preserving term is very crucial in dehazing, as the contrast
of the overall image will be increased after dehazing. With the proposed GRM,
new edges (often caused by artifacts) that do not exist in the input image will
be penalized but the original strong image edges will be kept.

Due to the existence of the artifacts, it is very possible that the linear haze
model does not hold on every corrupted pixel. Unlike previous approaches, we
assume there may exist some artifacts or large errors E in the input image, which
violates the linear composition model in Eq. (1) locally. Furthermore, we assume
E is sparse. This is reasonable as operations such as compression do not damage
image content uniformly: they often cause more errors in high frequency image
content than flat regions. With above assumptions, to recover the latent image,
we solve the following optimization problem:

min
J,E

{1
2

∫
‖Jt−(I − E − A + At)‖22 dx + λ

∫
‖E‖0 dx + η

∫
‖∇J − ∇I‖0 dx},

(13)
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where λ is a regularization parameter. Intuitively, the first term says that after
subtracting E from the input image I, the remaining component I−E, together
with the latent image J and the transmission map A, satisfy the haze model in
Eq. (1). The second term E represents large artifacts while the last term encodes
our observations on image edges.

However, the �0 minimization problem is generally difficult to solve. Therefore
in practice, we replace it with the closest convex relaxation – �1 norms [5,15]:

min
J,E

{1
2

∫
‖Jt−(I − E − A + At)‖22 dx + λ

∫
‖E‖1 dx + η

∫
‖∇J − ∇I‖1 dx}.

(14)

We alternately solve this new problem by minimizing the energy function
with respect to J and E, respectively. Let Z = J− I, and the J subproblem can
be rewritten as:

min
Z

{1
2

∫
‖(Z + I)t − (I − E − A + At)‖22 dx + η

∫
‖∇Z‖1 dx}, (15)

which is a TV minimization problem. We can apply an existing TV solver [1] for
this subproblem. After Z is solved, J can be recovered by J = Z + I. For the E
subproblem:

min
E

{1
2

∫
‖Jt−(I − E − A + At)‖22 dx + λ

∫
‖E‖1 dx}, (16)

it has a closed-form solution by soft-thresholding. The overall algorithm for latent
image recovery is summarized in Algorithm 2.

Algorithm 2. Robust Image Dehazing
Initialization: E0 = 0, J0 = I−A

t
+ A

for k = 0 to Maxiteration do
Zb = I − Ek − A + At − It
Z = arg minZ{ 1

2

∫ ‖Zt − Zb‖2
2dx + η

∫ ‖∇Z‖1dx}
Jk+1 = I + Z
Ek+1 = thresholdingλ(I − Jk+1t − (1 − t)A)

end for

The convergence of Algorithm 2 is shown in Fig. 3. We initialize J with the
least squares solution without GRM and a zero image E. As we could see, the
oject function in Eq. (14) decreased monotonically and our method gradually
converged. From the intermediate results, it can be observed that the initial J
has visible artifacts in the sky region, which is gradually eliminated during the
optimization. One may notice that E converged to large values on the tower and
building edges. As we will show later, these are the aliasing artifacts caused by
compression. And our method can successfully separate out these artifacts.
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Fig. 3. The convergence of proposed method. The oject function in Eq. (14) is
monotonically decreasing. The intermediate results of J and 10×E at iteration 1, 5,
200 and 500 are shown.

5 Experiments

More high resolution image and video results are in the supplementary material.
For quality comparisons, all the images should be viewed on screen instead of
printed version.

5.1 Implementation Details

In our implementation, the tensor parameters are set as β = 9, γ = 0.85. The
regularization parameters are α0 = 0.5, α1 = 0.05, λ = 0.01 and η = 0.1.
We found our method is not sensitive to these parameters. The same set of
parameters are used for all experiments in this paper. We terminate Algorithm1
after 300 iterations and Algorithm 2 after 200 iterations.

We use the same method in He et al.’s approach to estimate the atmospheric
light A. For video inputs, we simply use the A computed from the first frame
for all other frames. We found that fixing A for all frames is generally sufficient
to get temporally coherent results by our model.

Using our MATLAB implementation on a laptop computer with a i7-4800
CPU and 16 GB RAM, it takes around 20 s to dehaze a 480 × 270 image. In
comparison, 10 min per frame is reported in [17] on the same video frames. Same
as many previous works [7], we apply a global gamma correction on images that
become too dark after dehazing, just for better displaying.

5.2 Evaluation on Synthetic Data

We first quantitatively evaluate the performance of the proposed transmission
estimation method using a synthetic dataset. Similar to previous practices [26],
we synthesize hazy images from stereo pairs [18,22] with known disparity maps.
The transmission maps are simulated in the same way as in [26]. Since our
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method is tailored towards suppressing artifacts, we prepare two test sets: one
with high quality input images, the other with noise and compression corrupted
images. To synthesize corruption, we first add 1 % of Gaussian noise to the hazy
images. These images are then compressed using the JPEG codec in Photoshop,
with the compression quality 8 out of 12.

In Tables 1 and 2 we show the MSE of the haze map and the recovered image
by different methods, on the clean and the corrupted datasets, respectively. The
results show that our method achieves more accurate haze map and latent image
than previous methods in most cases. One may find that the errors for corrupted
inputs sometimes are lower than those of noise-free ones. It is because the dark
channel based methods underestimated the transmission on these bright indoor
scenes. The transmission may be slightly preciser when noise makes the images
more colorful. Comparing the results of the two tables, the improvement by our
method is more significant on the second set, which demonstrates its ability to
suppress artifacts.

Table 1. Quantitative comparisons on the clean synthetic dataset. Table reports the
MSE (10−3) of the transmission map (left) and the output image (right).

Aloe Barn Cones Dolls Moebius Monopoly Teddy Rocks

He et al. [10] 5.6/17.4 0.9/7.9 8.6/13.7 8.0/14.3 7.5/18.6 11.2/30.1 10.3/20.1 4.6/11.4

Li et al. [16] 4.5/13.2 1.6/13.9 5.8/8.9 4.1 /7.0 5.7/12.7 8.9/23.8 4.0/6.6 3.7/9.5

Ours 4.4/10.4 0.8/9.0 5.6/8.0 3.8 /6.8 5.4/12.7 7.9/20.7 6.6/10.7 3.2/8.0

Table 2. Quantitative comparison on the noise and compression corrupted synthetic
dataset. Table reports the MSE (10−3) of the transmission map (left) and the output
image (right).

Aloe Barn Cones Dolls Moebius Monopoly Teddy Rocks

He et al. [10] 5.3/17.0 1.0/11.2 8.1/12.9 7.6/13.8 7.2/17.4 10.7/27.9 10.0/19.3 4.1/10.3

Li et al. [16] 4.4/13.2 1.5/14.2 5.6/8.9 4.0/7.1 5.7/12.7 8.8/22.6 4.0/6.7 3.6/9.3

Ours 3.9/9.9 1.0/12.8 5.2/7.1 3.5/6.2 5.1/11.4 7.5/18.6 6.5/10.1 2.8/6.8

5.3 Real-World Images and Videos

We compare our method with some recent works [9,16,19] on a real video frame
in Fig. 4. The compression artifacts and image noise become severe after dehazing
by Meng et al.’s method and the Dehaze feature in Adobe Photoshop. Galdran
et al.’s result suffers from large color distortion. He et al. have pointed out the
similar phenomenon of Tan et al.’s method [25], which is also based on contrast
enhancement. Li et al.’s method [16] is designed for blocking artifact suppression.
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(a) (b)

(d) (e)

(c)

(f)

Fig. 4. Dehazing results of different methods. (a) Input image. (b) Meng et al.’s result
[19]. (c) Li et al.’s result [16]. (d) Galdran et al.’s result [9]. (e) Photoshop 2015 dehazing
result. (f) Our result.

Although their result does not contain such artifacts, the sky region is quite over-
smoothed. Our result maintains subtle image features while at the same time
successfully avoids boosting these artifacts.

Our method can especially suppress halo and color aliasing artifacts around
depth edges that are common for previous methods, as shown in the zoomed-in
region of the tower in Fig. 5. Except the result by our method, all other methods
produce severe halo and color aliasing artifacts around the sharp tower boundary.
Pay special attention to the flag on the top of the tower: the flag is dilated by
all other methods except ours. Figure 5(h) visualizes the artifact map E in Eq.
(14), it suggests that our image recovery method pays special attention to the
boundary pixels to avoid introducing aliasing by dehazing. We also include our
result without the proposed GRM in Fig. 5(f). The blocky artifacts and color
aliasing around the tower boundary can not be reduced on this result, which
demonstrates the effectiveness of the proposed model.

In Fig. 6, we compare our method with two variational methods [9,17] pro-
posed recently on a video frame. Galdran et al.’s method [9] converged in a
few iterations on this image, but the result still contains haze. The method in

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. Zoomed-in region of Fig. 4. (a) Input image. (b) Meng et al.’s result [19]. (c)
Li et al.’s result [16]. (d) Galdran et al.’s result [9]. (e) Photoshop 2015 result. (f) Our
result without the proposed GRM. (g) Our result. (h) Our E × 10.
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Fig. 6. Comparison with some recent methods. (a) Input video frame. (b) Galdran
et al.’s result [9]. (c) Li et al.’s result [17]. (d) Our result. (e) Li’s depth [17] (computed
using the whole video). (f) Our transmission map.

[17] performs simultaneously dehazing and stereo reconstruction, thus it only
works when structure-from-motion can be calculated. For general videos contain
dynamic scenes or a single image, it cannot be applied. From the results, our
method is comparable to that in [17], or even better. For example, our method
can remove more haze on the building. This is clearer on Li’s depth map, where
the shape of the building can be hardly found.

We further compare our method with the deblocking based method [16] on
more video sequences in Fig. 7. Li et al.’s method generates various artifacts in
these examples, such as the over-sharpened and over-saturated sea region in the
first example, the color distortion in the sky regions of the second, and the halos
around the buildings and the color banding in the third example. In the bottom
example, there is strong halo near the intersection of the sky and sea. Another
drawback of Li et al.’s method is that fine image details are often lost, such as
the sea region in the last example. In contrast, our results contain much less
visual artifacts and appear to be more natural.

For videos, the flickering artifacts widely exist on the previous frame-by-
frame dehazing methods. It is often caused by the artifacts and the change of
overall color in the input video. Recently, Bonneel et al. proposed a new method
to remove the flickering by enforcing temporal consistency using optical flow [2].
Although their method can successfully remove the temporal artifacts, it does
not work for the spatial artifacts on each frame. Figure 8 shows one example
frame of a video, where their result inherits all the structured artifacts from the
existing method. Although we only perform frame-by-frame dehazing, the result
shows that our method is able to suppress temporal artifacts as well. This is
because the input frames already have good temporal consistency. Such temporal
consistency is transfered into our result frame-by-frame by the proposed GRM.

We recruited 34 volunteers through the Adobe mail list for a user study
of result quality, which contained researches, interns, managers, photographers
etc. For each example, we presented three different results anonymously (always
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Fig. 7. Comparison with Li et al.’s method. First column: input video frame. Second
column: Li et al.’s result [16]. Third column: our result.

Fig. 8. A frame of video dehazing results. The full video is in the supplementary
material. The halos around the pillars and structured artifacts are indicated by the
yellow circle and arrows. (Color figure online)
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including ours) in random orders, and asked them to pick the best dehazing
result, based on realism, dehazing quality, artifacts etc. 52.9 % subjects preferred
our “bali” result in Fig. 6, 47.1 % preferred the result in [17] and 0 % for He et al.’s
[10]. We have mentioned above that [17] requires external structure-from-motion
information, while ours does not and can be applied to more general dehazing.
For Fig. 8, 91.2 % preffered our results over He et al.’s [10] and Bonneel et al.’s
[2]. For the rest of examples in this paper, our results were the preferred ones
also (by 73.5 %–91.2 % people), where overall 80.0 % picked our results over Li
et al.’s [16] (14.7 %) and He et al.’s [10] (5.3 %).

5.4 Discussion

One may argue there are simpler alternatives to handle artifacts in the dehazing
pipeline. One way is to explicitly remove the image artifacts before dehazing,
such as Li et al.’s method. However, accurately removing all image artifacts itself
is a difficult task. If not done perfectly, the quality of the final image will be com-
promised, as shown in various examples in this paper. Another alternative is to
simply reduce the amount of haze to be removed. However, it will significantly
decrease the power of dehazing, as we show in the tower example in the supple-
mentary material. Our method is a more principle way to achieve a good balance
between dehazing and minimizing visual artifacts.

Despite its effectiveness, our method still has some limitations. Firstly, our
method inherits the limitations of the dark channel prior. It may over-estimate
the amount of haze for white objects that are close to the camera. In addition, for
very far away objects, our method can not significantly increase their contrast,
which is due to the ambiguity between the artifacts and true objects covered by
very thick haze. It is even difficult for human eyes to distinguish them without
image context. Previous methods also have poor performance on such challenging

Fig. 9. Dehazing a low quality JPEG image. From left to right are the input image
and the results by: Fattal et al. [7], He et al. [10], Li et al. [16] and ours. The bottom
row shows the zoomed-in areas corresponding to the yellow box. (Color figure online)
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tasks: they either directly amplify all the artifacts or mistakenly remove the
distant objects to produce over-smoothed results.

Figure 9 shows one such example that contains some far-away buildings sur-
rounded by JPEG artifacts. Both Fattal et al.’ result and He et al.’s have serve
JPEG artifacts after dehazing. On the contrary, in Li et al.’s result, the distant
buildings are mistakenly removed by their deblocking filter, and become much
less visible. Although our method cannot solve the ambiguity mentioned above
to greatly enhance the far-away buildings, it can automatically take care of the
artifacts and generate a more realistic result.

6 Conclusion

We have proposed a new method to suppress visual artifacts in image and video
dehazing. By introducing a gradient residual and error layer into the image
recovery process, our method is able to remove various artifacts without explic-
itly modeling each one. A new transmission refinement method is introduced in
this work, which contributes to improving the overall accuracy of our results. We
have conducted extensive evaluation on both synthetic datasets and real-world
examples, and validated the superior performance of our method over the state-
of-the-arts for lower quality inputs. While our method works well on the dehazing
task, it can be potentially extended to other image enhancement applications,
due to the similar artifacts-amplification nature of them.
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