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Diffuse Optical Tomography Enhanced by Clustered
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Abstract—Diffuse optical tomography (DOT) is a noninvasive
technique whichmeasures hemodynamic changes in the tissue with
near infrared light, which has been increasingly used to study brain
functions. Due to the nature of light propagation in the tissue, the
reconstruction problem is severely ill-posed. For linearized DOT
problems, sparsity regularization has achieved promising results
over conventional Tikhonov regularization in recent experimental
research. As extensions to standard sparsity, it is widely known that
structured sparsity based methods are often superior in terms of
reconstruction accuracy, when the data follows some structures.
In this paper, we exploit the structured sparsity of diffuse optical
images. Based on the functional specialization of the brain, it is
observed that the in vivo absorption changes caused by a specific
brain function would be clustered in certain region(s) and not ran-
domly distributed. Thus, a new algorithm is proposed for this clus-
tered sparsity reconstruction (CSR). Results of numerical simula-
tions and phantom experiments have demonstrated the superiority
of the proposed method over the state-of-the-art methods. An ex-
ample from human in vivo measurements further confirmed the
advantages of the proposed CSR method.

Index Terms—Clustered sparsity, diffuse optical tomography
(DOT), functional brain imaging, structured sparsity.

I. INTRODUCTION

D IFFUSE optical tomography (DOT) is an emerging
technique used to study brain functions, which is quickly

gaining favorable recognition because of its noninvasive
manner and relatively low cost [1], [2]. This technique uses
near infrared light in a range of 650–900 nm, which is sensitive
to the absorptions of oxygenated hemoglobin (HbO2) and de-
oxygenated hemoglobin (Hb). The light sources and detectors
are arranged on the scalp. The diffused light from the cortical
layer of the brain is acquired to form an image of activation.
Compared with other neuroimaging modalities, such as func-
tional magnetic resonance imaging (fMRI), DOT can provide
more comprehensive information of cerebral hemodynamics,
while fMRI has better spatial resolution. A recent review of
DOT is given in [3].
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One of the main challenges in DOT is the image recon-
struction (or inverse problem). Due to the diffusive nature of
light and limited numbers of sources and detectors, the inverse
problem is severely ill-posed. In order to make the problem
more tractable, it is necessary to make linearization approxima-
tion [4], [5], e.g., Rytov approximation. Regularization is often
applied to the linear inverse problem to obtain a unique solu-
tion. Conventionally, the -norm regularization (also known
as Tikhonov regularization) is the most commonly used method
because it can be easily implemented [6]. The drawback is its
tendency to over-smooth the image by penalizing large values.
Thus, sharp boundaries for the reconstructed images are very
difficult to obtain by the -norm regularization.
Since the perturbation from a homogeneous background

or reference medium is relatively small in volume and con-
trast, sparsity of the reconstructed image is generally assumed
[7]–[11]. Guided by compressive sensing theory [12], a sparse
signal or image can be recovered from fewer measurements
than that dictated by Shannon–Nyquist theorem under mild
conditions. Sparsity inducing methods have been shown to
be repeatedly successful in many real-world applications
[13]–[16]. In DOT, norm is first used in [7], [9], [11] to
induce sparsity. A more recent work shows that regularization
with and smooth- norms can improve
the results of norm regularization [10], while the inverse
problem is more difficult to solve due to the nonconvexity and
nonsmoothness of such norms.
While promising results have been obtained in these spar-

sity-inducing methods over the conventional norm regular-
ization, accurate reconstruction of diffuse optical images is still
challenging. First, experiments often involve noise, while stan-
dard sparsity based methods are often not robust to noise, e.g.,
those in our later simulations. True signals are difficult to dis-
tinguish from significant noise, as the noise may also satisfy
the sparsity assumption. Second, based on compressive sensing
theory, the minimal number of measurements for successful re-
covery is required to be , where is
the number of nonzero components and is the length of the
signal. Limited by the number of measurements in DOT, these
standard sparsity based methods may fail when the image is less
sparse (i.e., is larger). Fortunately, such limitations of stan-
dard sparsity have been overcome in advanced sparsity tech-
niques called structured sparsity [17], [18]. According to struc-
tured sparsity theories [17]–[19], fewer measurements are re-
quired for signals with structured sparsity than those with stan-
dard sparsity, or the recovery accuracy can be improved with the
same number of measurements. Also, structured sparsity based
methods are often more robust to noise. However, for different
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types of data, discovering the underlying structures of the data
and developing an efficient method to solve the corresponding
problem is still open to questions. In this study, we aim to im-
prove DOT based on structured sparsity.
The diffuse optical images do have some special structures

if we look at the brain features in biology. It is widely known
that human actions correspond to certain regions of brain ac-
tivation. For example, brain state changes specifically in the
dorsal medial prefrontal area during Vipassana meditation [20].
These changes of brain state only take place in a region or re-
gions but are not randomly distributed over the whole brain,
which will make the change of absorption have a clustered ap-
pearance. In contrast to previous works that use no priori in-
formation other than sparsity, we propose a new method to im-
prove the reconstruction by exploiting this clustered structure.
We call this method clustered sparsity reconstruction (CSR).
The clustered sparsity problem is modeled with convex pro-
gramming and solved by a new algorithm based on the Fast It-
erative Shrinkage-Thresholding Algorithm (FISTA) framework
[21]. Comprehensive experimental results have demonstrated
significant improvements achieved by our CSR method when
compared with previous works.

II. THEORY

A. Regularization for DOT

The relative change in optical density is measured by each
source-detector (S-D) pair. Photon propagation in human tissue
is mathematically described by the Boltzmann transport equa-
tion [7]. Following previous work [22], we assume the back-
ground optical parameters are known in this study. Therefore,
the reconstruction problem in DOT can be simplified by the
linear Rytov approximation [7], [9]

(1)

where is the vector of measured relative light density
changes; represents an image (after vectorizing) of

(i.e., the change of absorption coefficient); is
the forward sensing matrix referring to the sensitivity of pixels
with different S-D pairs. Due to the limitation on the number
of S-D pairs and the diffusive nature of light, this problem is
severely ill-posed, i.e., . To obtain a unique solution, the
-norm regularization is widely used and the objective function

becomes

(2)

where is a positive parameter and can be selected by the
L-curve method [23]. To overcome the over-smoothing by
-norm regularization, many recent methods have been pro-

posed to exploit the sparsity of the reconstructed image [7], [9],
[10], [24]. Sparsity-inducing norms, e.g.,
and smooth- norms, are used for regularization instead of
norm

(3)

Fig. 1. Examples of structured sparse data. Red denotes nonzeros components
and the white denotes zero components. (a) Group sparse data, where each
column is a group. (b) Tree sparse data. Ancestors of a nonzero node to the
root are all nonzeros.

(4)

where the norm is approximated with the Gaussian func-
tion. Promising results have been obtained using these methods.
However, these standard sparsity based methods only exploit
the sparseness of the reconstructed image, while the correlations
or structures of the nonzero values have not been utilized.

B. Structured Sparsity

Compressive sensing theory [12] provides a theoretical
guarantee for robust recovery with standard sparsity (e.g.,
norm). Under mild conditions, it has been proven that

measurements are required for suc-
cessful recovery with high probability, where is the number
of nonzero components and is the total number of compo-
nents. However, for DOT problems, the number of measure-
ments is limited by physical reasons, e.g., the diffusive nature
of light and the size of source-detectors. In some cases where
the images are less sparse, i.e., is relatively large to , the
performance of standard sparsity based methods (e.g., those
mentioned above) cannot be guaranteed.
To overcome this limitation, structured sparsity theories

have been developed recently [17], [18]. These theories suggest
that, if we could exploit more prior information than sparsity,
the measurement bound can be reduced [25]. For example,
the nonzero components may have a group structure, where
the components in the same group are simultaneous zeros or
nonzeros [26], [27]. Mixed norm can be used to model
group sparsity, which is also feasible for overlapping groups
[28]. Another common structure is the tree structure [16], [29].
Fig. 1 shows these two examples. If the group structure and
tree structure are exploited, the required measurements for suc-
cessful recovery can be reduced to and

, respectively, where is the number
of nonzero groups and denotes the total number of groups.
The group structure has already been successfully utilized for
the support estimation of absorption and scattering coefficients
in tumor imaging [22], [30]. However, the reconstruction is still
performed with standard sparsity. To the best of our knowledge,
the structured sparsity has rarely been used in DOT.
Although structured sparsity provides advantages over stan-

dard sparsity in reconstruction problems, the structures of the
data is often much more difficult to be observed than sparseness.
In addition, unlike standard sparsity that has been studied for a
couple of decades, there is much fewer algorithms for structured
sparsity. For some complex structures, developing an efficient
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Fig. 2. (a) Motor cortex in human brain. (b) Anatomical cross section of the motor cortex, where different regions correspond to different actions. Images come
from Google Images. (c) Reconstructed diffuse optical image of brain activity caused by a finger-tapping task. Yellow color represents the activated brain region,
while red color indicates the maximal activation within the region.

algorithm is still challenging. In this article, we aim to study the
inherent structures in diffuse optical images and develop an ef-
ficient algorithm for fast reconstruction.

III. METHOD

A. Clustered Appearance

The diffuse optical image is often sparse as the change of
absorption is relatively small compared to the whole imaging
area. This prior information has been utilized in many existing
methods [7]–[10]. We further observe that diffuse optical im-
ages have a clustered appearance, i.e., the change of absorption
is often clustered in certain regions but not randomly distributed.
In biology, it is because human actions correspond to certain
regions of brain activation, which is widely known. Besides
the example discussed above, Fig. 2 shows the motor cortex
of human brain and the diffuse optical tomography caused by
a finger-tapping task. In this example, the brain activation clus-
ters in the motor cortex area.
By structured sparsity theories [17]–[19], it has been proven

that only measurements are required to re-
cover clustered sparse signals instead of
for standard sparse signals. Here denotes the number of
clusters with . When the number of measurement is
not sufficient for standard sparsity, it is still possible to achieve
successful recovery with clustered sparsity. When using the
same number of measurements, significant improvement can
be gained by clustered sparsity.
In contrast to previous works, one of our contributions is

to utilize this prior information to boost reconstruction. If we
take a close look, the nonzero pixels are mutually connected
and cluster together, which can be modeled as a undirect 2-D
graph (e.g., Fig. 3). Each pixel is a vertex and only a cluster or a
few clusters are nonzeros. In previous works involving clustered
sparsity [17]–[19], greedy algorithmswere used to solve the cor-
responding problem. However, for such greedy algorithms, the
sparsity number should be approximately known before run-
ning the algorithm, which is not available for DOT. Instead, we
efficiently solve this problem via convex programming.We only
assume the image has a clustered tendency, while other informa-
tion such as the sparsity number , the size and locations of the
cluster do not need to be known.

Fig. 3. Clustered sparsity data. Red nodes denotes nonzeros components and
the white ones denotes zero components. Nonzero nodes tend to be mutually
connected but not randomly distributed.

B. Efficient Algorithm

In this study, the clustered sparsity is approximated by over-
lapping group sparsity (OGS) [28].We assign each pixel with its
neighbor pixels (e.g., 4, 8) into a group. With this group setting,
nonzero pixels of the reconstructed image will be only in the
same groups, leading to the clustered structure of the nonzero
pixels. The optimal group size (e.g., four neighbors or eight
neighbors) may differ depending on the data, but whether we
use the structured sparsity prior information or not is what mat-
ters the most. The experiments in the latter sections demonstrate
that reconstruction accuracy can be significantly improved with
the eight neighbors group setting. Now, we can summarize our
model for structured sparsity based DOT

(5)

where denotes one of the group de-
scribed above and denotes the components in this group. The
geometric view of norm with overlapping groups and more
discussions can be found in [28].
Optimizing the overlapping group sparsity based problems

is not an easy task, due to nonseparability of the mixed
norm. A few software packages could solve this problem (5),
e.g., [31], [32]. However, such algorithms duplicate the over-
lapped components as the original work [28]. The computa-
tional complexity will increase significantly due to the highly
overlapped structure, e.g., 5 and 9 times higher when four and
eight neighbors are grouped together. We would like to solve it
more efficiently.
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To solve (5), we propose a new algorithm based on the FISTA
[21] framework, which has been proven to reach the optimal
convergence rate for first order gradient methods. The whole
algorithm is summarized in Algorithm 1. We call it as clus-
tered sparsity reconstruction (CSR). For the first step,

, and denotes its
gradient which has Lipschitz constant . The smallest Lips-
chitz constant can be selected based on the maximum eigen-
value of . denotes the transpose of . In the original
FISTA algorithm for norm regularization, the second step has
a closed form solution by soft-thresholding. However, due to
the nonsmoothness and nonseparability of the overlapped
norm, there is no closed form solution for the OGS thresholding/
denosing problem in the second step. We apply the reweighted
least squares algorithm [33]–[35] to solve it. Finally, each is
updated by the results in the previous two iterations to accel-
erate the convergence.

Algorithm 1 Clustered Sparsity Reconstruction (CSR)

Purpose:

Input:

for to do
1)
2)
3)
4)

end for

The OGS thresholding algorithm is listed in Algorithm 2.
denotes the convolution operation for with tem-

plate and “ ” denotes the element-wise operations. depends
on our group setting that has been discussed before. Note that
both and need to be reshaped in 2-D in order to apply
convolutions. Compared with standard OGS solvers [31], [32]
with complexity, this algorithm only costs ,
where is the size of each group.

Algorithm 2 OGS Thresholding

Purpose:

Input:

for to do
1)
2)

end for

IV. EXPERIMENT

A. Simulation

Simulations are conducted using the PMI Toolbox [36]. The
probe geometry of these simulations and later phantom exper-
iments is the same as that in previous work [37]. The number
of measurements is , and the field of view (FOV) is

Fig. 4. Reconstruction performance of different algorithms when
( dB).

6 cm 6 cm with resolution 61 61 pixels. The optical proper-
ties of the medium are absorption coefficient cm
and reduced scattering coefficient cm . The ob-
jects (two spheres of 1 cm diameter) have the same scattering
coefficient as the medium, and a higher absorption coefficient

cm . The sensitivity matrix A is generated by
Rytov approximation [9]. Random Gaussian noise with stan-
dard derivation is added into the measurement vector . Root
mean square error (RMSE) and contrast-to-noise ratio (CNR)
are used as metrics for evaluation. From the definition, the re-
constructed image with larger CNR means better performance.
As suggested in [10], in the norm regularization is set as
0.5. There is an additional term combined in the software of
smooth method. We set this parameter as the best value of
that in the norm regularization method.
The RMSEs for different are presented in Fig. 4 when

. This corresponds to a signal-to-noise ratio (SNR)
of 20.79 dB. Compared with previous methods, smaller errors
are achieved by the proposed method with a proper , which co-
incides with the structured sparsity theories. Both the norm
regularization [38] and the proposed method are less sensitive
to the parameter setting.
Fig. 5(a) presents the reconstruction results in terms of

absorption change ( , cm ) at the optimal parameters for
each algorithm when . All the reconstructed images
are shown at the same scale. The absorbers reconstructed by
norm regularization have a low contrast to the background

due to over-smoothing. Sparse results are achieved by smooth
[10] and norm regularization [9], which have much

higher contrasts compared with the previous one. However,
these norms only encourage sparsity and have no other con-
straints on the locations of the nonzero values. The absorbers
on the images are slightly distorted and distributed, e.g., those
by the norm and norm regularization. Our method not
only induces sparsity, but also encourage the nonzero values to
be clustered. The cross sections of these recovered images at

are shown in Fig. 5(b). Compared to the ground-truth
image, the result obtained by the norm has smaller pixel
values, while those reconstructed by norm and smooth
norm have significantly larger pixel values. It is consistent with
our visual observations of Fig. 5(a).
We also validate these algorithms with increased noise.

When we gradually increase , the reconstructed absorbers
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Fig. 5. (a) Ground-truth image and the reconstructed images of in cm based on simulations, where ( dB). (b) Cross sections
of the absorbers at , which are indicated by the white arrows in (a).

Fig. 6. Ground-truth image and the reconstructed images from the simulation
( in cm ), where ( dB).

of the existing sparsity based methods tend to be severely
distorted, while that by the conventional norm regulariza-
tion has a very low contrast. Fig. 6 presents the results when

( dB). We use different color bars to
show these results. Even with big noise, the result given by
our CSR method is only sightly distorted and the shapes of the
absorbers can be clearly observed. As the higher accuracy of
our method can be clearly observed in this figure, we do not
compare the cross sections of different images here. Comparing
results with a different power of noise in Figs. 5 and 6, CSR is
more robust to noise than the standard sparsity based methods
( , and norm regularization).
To quantitatively validate the above conclusion, the recon-

struction errors of different methods are presented in Fig. 7 with
different levels of noise. To reduce randomness, we run each
method at each setting 20 times, and the average results are re-
ported here. It can be clearly observed that the conventional
normmethod and the proposed method are more robust to noise,
while the standard sparsity based methods using norm and

Fig. 7. Reconstruction errors of different methods with various levels of noise.

TABLE I
PARAMETER SETTING FOR THE DIFFERENT METHODS

norm are sensitive to noise. The proposed CSR method con-
sistently outperforms all of the other methods. These results fur-
ther confirm the advantages of the proposed CSR method.

B. Phantom

We further conducted experiments to validate our method
using laboratory tissue phantoms. The experiment environment
was the same as that in previous work [37]. A large tank
(approximately 15 10 10 cm ) was used to contain the
phantom. The walls of this tank were covered by black tape
so that no light was reflected. The phantom had an absorption
coefficient of cm and a reduced scattering
coefficient of cm . A 1-cm-diameter spherical
absorber with cm and the same reduced scattering
coefficient was placed around the x-axis and 3 cm below the
surface of the phantom. The measured data with and without
the absorber were respectively acquired by all 188 channels.
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Fig. 8. Reconstructed images of a single absorber ( in cm ). Dashed circles indicate the actual size of the object. Right bottom panel shows the cross
sections of different images at the maximum pixel value, which are indicated by the arrows in the reconstructed images. Black solid line in the right bottom panel
indicates the maximum caused by the actual absorber.

Keeping the experimental setup, we then place two spherical
absorbers with 1 cm diameter around the x-axis at the same
depth to conduct another experiment.
In previous methods [9], [38], the L-curve method [23] was

used to select the parameters. However, such an approach often
does not lead to the optimal parameters [39], [40]. In this study,
we first selected a small range of the parameters by the L-curve
method, and then the final parameter was selected in this range
with user’s adjustment. A sparser solution with fewer clusters is
preferred. We list the parameters of different methods in Table I,
which are used for both phantom experiments. An adaptive
method proposed recently may alleviate this parameter tuning
process [41]. Interestingly, we find these parameter settings are
consistent with those in Fig. 4. It indicates another way to tune
the parameters in clinic applications. The parameters tuned in
some known tasks may be used for other tasks with the same
experimental environment.
Figs. 8 and 9 present the reconstruction results for these two

phantom experiments. Due to their significantly different recon-
structed values, separate color bars are used. Since we know the
actual size of the absorbers, the absorbers reconstructed by the
norm look dispersive, with larger areas and smaller intensity.

We could find that the results obtained by the norm, smooth
norm, and norm tend to be smaller than the ground-truth.

Reconstruction of the second data (Fig. 9) is quite difficult as it
is less sparse. The true absorbers are hard to be distinguished by

and norm methods. If we take a close look, the images
recovered by the norm and smooth norm contain pixels
of negative values. This may result in cross-talk in actual func-
tional brain study [42]. Quantitative comparisons of these exper-

iments are listed in Table II, which are consistent with our visual
observations. Based on the simulations results and the above
analysis, the absorbers recovered by our CSR method should be
the closest one to the ground-truth in terms of object area and
intensity. One of the reasons is that our structured sparsity based
method is less sensitive to noise. The random noise often does
not follow the structures of the true signal, while it is hard to
distinguish using the standard sparsity based methods.

C. Functional Human Brain Imaging

We have validated that the proposed CSR outperforms pre-
vious methods on the simulated data and phantom data. Our
next task is to show how to apply the proposed method on
functional brain imaging. A well-known motor task [43] (i.e.,
finger-tapping) is used here to evoke motor cortex activation.
We follow the same protocol as that in [44] and the mea-
surements were acquired by a multichannel, continuous-wave
NIRS system (CW-5, Techen Inc., Milford, MA, USA) [45].
Following a fixed rhythm, the subjects were instructed to
simultaneously tap four fingers (except the thumb) up and
down without moving the wrist and arm. Light of 690 nm and
830 nm wavelengths were emitted from sources to measure
the changes in concentrations of oxy- and deoxy- hemoglobin.
The reconstructed images (with 41 13 pixels) were sliced at

cm depth.
We randomly selected one of the eight subjects that was re-

ported in [44]. With the same measurements, we reconstructed
the images with different methods, which contain norm,
norm [10], smooth norm [10], norm [9] regularization
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Fig. 9. Reconstructed images of two separated absorbers ( in cm ). Dashed circles indicate the actual sizes of the objects. Right bottom panel shows the
cross sections of different images at the maximum pixel value, which are indicated by the white arrows in the reconstructed images. Black solid line in the right
bottom panel indicates the maximum caused by the actual absorbers.

TABLE II
CNRS OF DIFFERENT PHANTOM RECONSTRUCTION RESULTS

and the proposed CSR. The in our method was selected as
. Those results are presented in Fig. 10 on the same

scale.
The images reconstructed by all methods had brain activa-

tion on the lower right side. This is expected due to the left
hand finger tapping (contra-lateral activation) of the subject.
Enlarged activation areas were obtained by the norm and
smooth norm regularization (the first row and the third row
of Fig. 10), while the remaining images showed smaller acti-
vation areas. If comparing the sparsity inducing methods (i.e.,

norm, smooth norm, norm with the proposed method),
the proposed method and norm produced more localized im-
ages. In addition, it is obvious that the images obtained by our
CSR method (the last row of Fig. 10) had much higher con-
trasts than those obtained by norm. Considering the shapes of
different results, our method provided a more concentrated and
accurate result. Comparing the reconstruction results of oxyhe-
moglobin and deoxyhemoglobin (i.e., the first column and the
second column), it seems that our method can potentially re-
duce the cross-talk [42]. These results confirms the benefit of
our method in functional human brain studies.

V. DISCUSSION AND CONCLUSION

In this study, we proposed to use structured sparsity to im-
prove the reconstruction accuracy of DOT. More precisely, the
clustered prior information was utilized by the mixed norm
regularization. This was motivated by the fact that functional
brain activation is often localized in some special region(s) but
not randomly distributed. Before this study, the clustered spar-
sity had already been successfully used in compressed sensing
and computer vision [46]. It leads to several advantages: 1)
improving the reconstruction accuracy with the same number
of measurements; 2) maintaining stable recovery when the
measurements are not sufficient for standard sparsity (e.g., by
norm); 3) enhancing the robustness to noise and preventing

artifacts in the background. By structured sparsity theories
[17]–[19], it has been proved that only
measurements are required to recover clustered sparse signals
instead of for standard sparse signals.
Here denotes the number of clusters, which is significantly
smaller than the number of nonzero pixels . There is no addi-
tional information (e.g., shape, size, location of the absorbers)
required for the proposed algorithm. These are why it could
facilitate diffuse optical imaging with high accuracy.
Numerical simulation and phantom experiments have

validated the effectiveness of our method when compared
with conventional and recent algorithms. Qualitative anal-
ysis demonstrated that out method can outperform existing
approaches up to 30% in terms of CNR. The superior perfor-
mance of our method was further confirmed on in vivo data.
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Fig. 10. 2-D slices (1.5 cm below the scalp surface) of reconstructed human brain images induced by a finger tapping task. Left column: the images reconstructed
for increased oxy-hemoglobin concentration (arbitrary unit). Right column: the images reconstructed for decreased deoxy-hemoglobin concentration (arbitrary
unit). From the first row to the last row, the images are reconstructed using norm, norm, smooth norm, norm, and the proposed method, respectively.
Figure is best viewed on screen, rather than in print.

Our method can recover images with the fewest artifacts and
best contrasts in the expected region. Practical applications can
benefit from the proposed CSR method with little or no revision
on the hardware.
Currently, parameter selection is still an open active re-

search area for DOT. To the best of our knowledge, there
is no efficient way to accurately select the optimal regular-
ization parameter or parameters for each algorithm. For this
reason, an algorithm that has fewer parameters and is not
sensitive to the parameters is preferred. The norm and
norm based methods are very sensitive to parameter settings,
as illustrated by their sharp curves in Fig. 4. We used the
original FISTA algorithm to solve the norm regularization
problem and ran sufficient iterations until the algorithm con-
verged. The human brain imaging results seem to be better
if the stopping criteria are controlled manually [11], e.g., by
setting the number of Newton iterations. However, multiple
parameter selection is a drawback of the algorithm. A similar
issue is also in the method of smooth norm regularization,
where an additional norm regularization term is included
in the software. By contrast, there is only one nonsensitive
parameter in our method. We have made our best effort
to select the optimal parameters for different methods for

fair comparisons. Although the parameters for the previous
methods may not be exactly optimal, the experimental results
are sufficient to demonstrate the benefit of our method, which
can achieve substantial improvement in image reconstruction
with only one nonsensitive parameter.
All experiments are conducted using MATLAB on a desktop

with 3.4-GHz Intel core i7 3770 CPU. The reconstruction speed
of our CSR method is slightly slower than the norm regu-
larization method, due to the more difficult problem with over-
lapping groups. In the phantom experiments, the reconstruction
times of the norm, norm, smooth norm, norm based
methods and the proposed method are around 3 s, 26 s, 2 s, 14 s,
and 23 s, respectively. Due to the linear approximation, such re-
construction speed is quite acceptable.
Although the proposed CSR method has achieved promising

results, some applications in DOT is still very challenging. Dif-
ferent from functional brain imaging, tumor imaging involves
the problem to reconstruct both scattering and absorption co-
efficients [22]. The current work cannot be directly applied to
such case. In some scenarios, such as breast imaging [47], the
image may not be sparse. Some sparsity transformation may be
required, e.g., the total variation [22]. Future work will focus on
extending the proposed method in such cases.
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